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Abstract

Video-based road detection is a crucial enabler for the successful development of driver

assistant and robot navigation systems. But reliable detection is still on its infancy and

deserves further research. In order to adapt to the situation consisting of environmental

varieties, an online framework is proposed focusing on exploring the structure cue of

the feature vectors. Through the structural support vector machine, the road boundary

and non-boundary instances are firstly discriminated. Then they are utilized to fit a

complete road boundary. After that, the road region is accordingly inferred and the

obtained results are treated as ground truth to update the learned model. Three con-

tributions are claimed in this work: online-learning updating, structural information

consideration, and targeted sampling selection. The proposed method is finally evalu-

ated on several challenging videos captured by ourselves. Qualitative and quantitative

results show that it outperforms the other competitors.

Keywords: Computer vision, machine learning, road detection, structural SVM,

online updating, road boundary

1. Introduction

According to one recent report [1], road traffic injury remains an important health

problem for the public. The total number of road traffic deaths keeps unacceptably high
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at 1.24 million per year, while the primary cause is unacceptably due to the driver’s

inattention and tiredness. To alleviate this situation, Driver Assistance System (DAS)5

[2, 3, 4] is developed and equipped, with the hope that it can serve as an autonomous

reminder and guidance for the drivers. Among the various techniques enabling the

DAS, road detection is the fundamental one, because it is the first step for a vehicle to

become moveable and many other intelligent maneuvers are based on it. For example,

Lane Departure Warning (LDW) [5, 6], Lane Centering [7], and even full autonomous10

driving [8] rely on the results of road detection. Moreover, it can provide a significant

contextual cue for target detection (e.g, vehicle or pedestrian) [9, 10, 11, 12] and act

as the prerequisite for robot navigation in an outdoor environment, which is widely

researched in artificial intelligence and computer vision.

Because of its practical and theoretical importances, road detection has been thor-15

oughly investigated in recent years. According to the types of sensing modalities used

for this purpose, existing methods can be categorized into active sensor based and pas-

sive sensor based. For the active sensor based methods, the sensors project certain

kinds of radiative lights and measure the reflection from its projection. Typical exam-

ples include Light Detection And Ranging (LIDAR) and Radio Detection And Ranging20

(RADAR). Several active sensors have been widely used for road understanding and

great progress has been made since the DARPA Grand Challenge and Urban Challenge

[13].

However, due to the restriction of limited perceptual range by the active sensors,

and the risk of inter-vehicle inference or pollution to the environment, the passive sen-25

sor based methods have a tendency of dominating the trend because of their noninva-

sive characteristic. To be specific, the passive sensors obtain useful information from

the environment by capturing the reflection of sun light or other artificial lights. This

kind of method can provide intuitive understanding of all the surrounding environmen-

t and deliver more meaningful cues, which are crucial for the development of future30

intelligent transportation systems in mixed traffic conditions [14]. As for the sensor,

video cameras that provide the visual data are the most frequent choice. Therefore, the

term “video-based” is interchangeably used with “passive sensor based” for simplicity

in the following sections.
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Figure 1: Typical road detection results of the proposed method. From top to bottom, each row represents
the detection results of a specific kind of scenery.

In this paper, we address the problem of video-based road detection utilizing an35

online strategy. The major focus is on exploring the structural information of the input

data through the structural SVM (SSVM). At the same time, the learned model is online

updated to adapt to the changing environment. Fig. 1 shows some typical detection

examples using the proposed method.

1.1. Related Works40

Since the presented work belongs to the passive sensor based type, we only review

the video-based methods. With respect to the different emphasis on the prior knowl-

edge, road detection can be divided into three groups: model-based, feature-based, and

learning-based.

1) Model-based method tends to have an assumption of road shape, which is actual-45

ly treated as road model. Then the aim is to find the fittest parameters under the model

assumption. Several strategies of model fitting [15, 16, 17, 18, 19] are used to get the

road model. Oniga et al. [15] fitted a quadratic road model by RANSAC approach

and the fitting result was refined by a region growing-like process so as to determine

the road surface. Sappa et al. [16] proposed Least Square Estimation (LSE) based50

approach to fit a model for the road surface. Fardi et al. [17] utilized Hough domain
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to determine the road borders after using the Gaussian pyramid technique to model the

scale information. Borkar et al. [18] employed RANSAC to eliminate outliers caused

by noise and artifacts in the road and Kalman filter was finally used to smooth the road

boundaries. Sawano and Okada [19] utilized an internal energy based on the tendency55

of a control point resisting changes in its state of motion in an image space, to represen-

t the road model. Although Model-based methods can accurately determine the road

region given a proper road model, it may be invalid to face the situations where road

shapes change as the vehicle is moving. Therefore, it is difficult to find an appropriate

model for unstructured roads with inconstant conditions.60

2) Feature-based method relies upon the extraction of image features to detect road

boundaries and road region. The features such as color, gradient and texture are com-

monly used to measure local neighborhoods and a likelihood function is formulated by

feature clustering [20], threshold segmentation [21] or region growing approach [22] to

obtain the road region. For example, He et al. [23] assumed that the color components65

of road surfaces obey the Gaussian distribution and the road areas were detected based

on the full color features. Sotelo et al. [24] utilized the Hue-Saturation-Intensity (HSI)

color features for segmentation to model the road pattern. Alvares et al. [25] employed

an illuminant-invariant, which was converted from the RGB space, as the feature s-

pace to accomplish the road detection task. The main advantages of the feature-based70

method are that it is insensitive to the shape of roads and little previous knowledge is

needed. But it is sensitive to shadows and other illumination changes.

3) Learning-based method [25, 26, 27] generally makes use of a trained neural

network or classifier to distinguish between the road region and non-road region. Such

methods are independent of special road markings and are capable of dealing with75

non-homogeneous road appearance, if the characteristics of road or non-road regions

are properly represented by the feature space. Alvarez and Lopez [25] introduced a

shadow-invariant feature space and it was used along with a likelihood-based classifier

which was online learned to achieve road segmentation. Son et al. [27] constructed

a probabilistic road model by supervised training and a posteriori probability based80

on visual information was then utilized to extract the road region. For learning-based

method, although less prior knowledge is needed, it heavily relies on the training sets
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Figure 2: Road detection pipeline. For an input frame at time t, the task is to detect the road area with
reference to previously obtained detection result at time t − 1. The first step is to select a set of sample
instances and express them with a fusion of three features. Then a SSVM classifier is utilized to distinguish
the road boundary and non-boundary instances. After that, a line fitting process is applied to get a more
complete and reliable boundary, abandoning those outliers. At the same time, the road area can be inferred
from the obtained boundary. Finally, to keep the model adaptable to the changing environment, an updating
strategy is enforced by emphasizing more on the misclassified instances. The updated model will be used in
the next frame.

and training strategies. But unfortunately, most of the classifier and neural network are

trained once, unable to adapt to the varieties of the environment.

Apart from the three types, most road detection problems can be successfully in-85

terpreted using a variant of the three above approaches or a combination of them. The

proposed method in this work belongs to the learning based prototype, while taking

advantages of advanced features and road boundary fitting.

1.2. Proposed Framework

Though many works have been proposed, most of them are based on the assumption90

that the road area is consistent in intensity or color. However, in real-life environments,

this assumption might fail because the intensity often varies a lot as the vehicle or robot

is moving. Moreover, the shadows and occlusions would also influence the detection

results. In this paper, we focus on the drivable road detection, aiming at inferring the

road region in a video collected by a camera mounted ahead of a vehicle or robot. Par-95

ticularly, the road region is inferred from the road boundary, which is not restricted to

only structural roads with distinguished lanes or curbs. Fig. 2 illustrates the pipeline of

the proposed method, which is named as Road Detection via Online Learning (RDOL).
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The four main components are introduced as follows.

1) Road feature extraction. In this work, we tactfully transform the road detec-100

tion problem into detecting the road boundary. After that, the ultimate road region can

be constrained and inferred from the detected boundary. The reason for detecting the

road boundary instead of road region can be explained as follows. Firstly, compared

with road boundary, more pixels are introduced for the road region and it can be easier

influenced by the intensity change, shadow and lighting condition. These phenome-105

na will result in big intra-class differences and degenerate the discriminative model.

Secondly, road boundary always coincides with the image edge which is less ambigu-

ous compared with region based method. As for the determination of road boundary,

the feature selection is a critical factor. In this work, only neighbor information of

road boundary is considered. The involved features include local gradient and texture,110

for the reason that they are significantly manifest for road boundary. Therefore, DSIFT

(Dense SIFT), HOG (Histogram of Oriented Gradient) and LBP (Local Binary Pattern)

are used for their robustness to intensity change and shadow.

2) SSVM inference. After feature extraction, a classifier is employed to determine

the existence of road boundary in the examined frame. In this step, we assume the115

boundary in the previous frame has been detected and a classifier for boundary/non-

boundary has been learned. Both of them are available for reference. Then a portion

of sample instances are selected from current frame as the candidates for further veri-

fication. These instances are purposefully chosen from the locations near the previous

boundary because the adjacent frames are prone to have little difference in boundary120

location. After that, the sample instances are tested by the previously learned structure

SVM classifier, with an output of binary labels. The classifier considers the structure

cue among input data and is robust for the adaptive environment.

3) Road boundary fitting. After classification, the detected road boundary consists

of sparse points and not reliable enough. Accordingly, a segmentation result is used to125

improve it. Our assumption is the region edges of obtained superpixels are more likely

to share the same positions with the detected boundary pixels. Those coincident pixels

are treated as the reliable ones to support further boundary fitting. Considering the fact

that straight road is the most common case in daily life, especially when the camera is
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close to the ground, straight line fitting is investigated as an example in our framework.130

The other situations are similar to it.

4) SSVM online updating. There is a strong possibility that the road appearance

varies as the vehicle or robot is moving. Consequently, an online updating strategy is

critical. When finishing the boundary detection procedure, the road region is inferred

from the extracted boundary and it is treated as ground truth. At the same time, the135

structural SVM classifier is updated with the misclassified samples from the examined

frame. The retrained classifier claims to be adaptive to the changed scene and will be

utilized in the next frame.

1.3. Contributions

Although many road detection methods are proposed in the literature, the presented140

method in this paper still has its advantages. The main contributions of this research

are listed as follows.

1) Online-learning framework. Traditional methods use a fixed training set to

generate the classifier. However, it is known to us that the road features, such as inten-

sity, color and gradient, may change dramatically in a variety of environmental condi-145

tions. An adaptive strategy might be necessary for a robust performance. In view of

this point, this work emphasizes on the online-learning ability of the designed detector

and the updated model maintains capable of tackling the novel environment changes.

2) Structural information considered. For traditional classification problem, the

structural information among the training instances is not considered. In fact, differ-150

ent classes may have different underlying data structures. It requires the classifier to

adjust the discriminative hyperplane to fit for the data structure. As for the context of

road detection, we think the boundary and non-boundary samples have their respective

characteristics and data distribution. Therefore, structural SVM is introduced as the

classifier for its structured learning ability and the online implementation is also used155

to accelerate the computation speed.

3) Targeted sampling selection. Generally, any of the positive and negative sam-

ples can be selected for the training purpose. In this work, only specific neighbor pixels

around the road boundary are considered. We think the regions far from the boundary
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will cause the degeneration of the classifier because of the lighting differences and160

shadows. As for the update of the model, only the misclassified instances are involved

in the retraining procedure because they are more informative. By meaningfully select-

ing the training samples, the classifier would become more robust and discriminative.

Moreover, these three contributions are generated into a unified framework for the

first time. Online learning strategy makes the proposed method adapt to varying road165

scenes. Structural information in the feature space helps to refine the road detection

results which can improve the performance of online learning in return. The target

sampling selection can also avoid the degeneration of the model which online learning

suffers. To sum up, all these contributions are considered based on the road detection

problem and the detection results would be reliable and robust.170

The remainder of this paper is organized as follows. In Section 2, the proposed

method is described in detail, including feature extraction, classification framework,

boundary fitting and model updating. In Section 3, experimental results are presented,

with a comprehensive qualitative and quantitative comparison and analysis. Finally,

conclusion is made in Section 4.175

2. Road Detection

The aim of this work is to detect the road area in an input video, which is collected

from a vehicle-mounted or robot-mounted camera. Since region-based road detection

is sensitive to intensity change, shadow and lightening condition, we transform the road

detection problem into detecting the road boundary. Then the road region is according-180

ly inferred from the obtained boundary. Traditional road boundary detection methods

mainly focus on the intensity space and utilize fitting strategies to estimate the candi-

date boundaries. Our method puts the boundary fitting on the more robust feature space

and regards the road boundary detection as a binary classification problem.

Since the proposed method is based on adaptive learning, a manually labeled ground185

truth is needed in the first frame. Then the model is updated at each frame. In the fol-

lowing part, we will introduce the proposed method step by step.
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2.1. Road Boundary Feature Extraction

In this work, the image patch centered at a sampling pixel is defined as an instance.

To appropriately represent the instances and distinguish the positives from the nega-190

tives, transforming the image from intensity space into feature space is a reasonably

better choice. This is because the intensity could change a lot when the vehicle or

robot is moving and its absolute value has little meaning to a region especially when

it passes through the edge. Based on these characteristics, gradient and texture fea-

ture are considered in the proposed method and three different feature spaces are used,195

including Dense SIFT (DSIFT), Histogram of Oriented Gradients (HOG) and Local

Binary Pattern(LBP).

2.1.1. DSIFT Feature

SIFT feature [28] has been widely used in computer vision, for it is robust and

invariant to scale, noise and illumination. DSIFT is obtained by computing the SIFT200

descriptor of the same scale over dense grids in the image domain. In our experiment,

the sampled instances are N × N image patches. The feature vector of each instance

can be achieved with a 4 × 4 array of histograms in which it has 8 orientation bins.

Therefore, the dimension of DSIFT descriptor is 4 × 4 × 8 = 128. The obtained

DSIFT feature is denoted as {di|i = 1, 2, . . . `}, where ` represents the number of205

sampling instances in the current frame and di is the ith instance descriptor.

2.1.2. HOG Feature

HOG feature [29] was first proposed for the problem of human detection. Ever

since then, numerous experiments have proved the effectiveness of HOG, because it

is invariant to changes in lighting, small deformations, etc. In this work, we also take210

HOG into the boundary detection task. Similar to SIFT, the original HOG computes

a histogram of gradient orientations in a local block. In our experiments, sampling

instances are considered as a local block and each block would generate one column

feature vector. It is represented as {hi|i = 1, 2, . . . `} where hi is the 31-dimensional

descriptor. The dimension of the HOG descriptor can be adjusted by changing the215

sampling distance of the histogram.
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Figure 3: Illustration of training sample selection. For the left images, the green lines indicate the ground
truth road boundary. For the right images, positive instances can be randomly selected from the red region
and negative ones from the blue region. The yellow region is served as a transition area.

2.1.3. LBP Feature

LBP [30] is a powerful descriptive method for texture information. The original

LBP operator labels the image by thresholding the N × N neighbors of each pixel

compared with the center pixel in intensity space and considering the result as a binary220

number. Then texture descriptor can be generated by converting the binary number

to decimal number or counting the histogram of the labels. One extension to the o-

riginal LBP operator is the introduction of uniform patterns [31] which is used in the

proposed method and a new pattern can be categorized into either one of the uniform

patterns or non-uniform pattern. The LBP feature vector of the ith patch is denoted225

as {li|i = 1, 2, . . . `} where li is the 10-dimensional descriptor. The dimension of the

LBP descriptor can also be adjusted by sampling distance of the histogram.

After the extraction of the features mentioned above, the feature vector xi of the ith

instance is obtained by concatenating each kind of feature vector into a column vector,

and written as

xi = [di;hi; li], i = 1, 2, . . . `, (1)

where di represents DSIFT feature vector of the ith patch, hi is the HOG feature vector

and li denotes the LBP feature vector.
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2.2. Online Structural SVM230

With the obtained feature vectors, a SSVM classifier is adopted to make a binary

decision of boundary/non-boundary. For the fact that the instances belonging to the

same class may have the same data structure distribution in the feature space, this

structure constraint can obviously eliminate the outliers. The classifier is learned in the

first frame and updated in every following frame.235

2.2.1. Training Set Generation

Generally, the ground truth of the first frame can be generated by region growing

strategy assuming the middle-bottom pixels belong to road region. This assumption is

always effective in real situations. On the other hand, it can also be manually labeled

if the assumption is incorrect. Since we have a ground truth of road boundary in the

first frame, the positive and negative training instances can be identified. The positive

instances are uniformly sampled from the road boundary. The negative instances can

be sampled from all the other non-boundary regions. However, the training is more

effective if the negative instances are chosen near the road boundary. This is because

the surrounding environment varies a lot. Negative instances far from the boundary

would make the classifier more ambiguous and degenerate its accuracy. Therefore,

negative instances are merely sampled from the neighbor of road boundary. This tar-

geted sampling can ensure the classifier’s discrimination is strengthened. In addition,

the computational complexity is reduced. The training set is denoted as

T = {(xi, yi)|(xi, yi) ∈ X × Y, i = 1, . . . , `}, (2)

where xi ∈ X represents the ith feature vector and yi ∈ Y is its label, ` is the number of

sampled instances for the classifier training. Fig. 3 illustrates the sampling procedure

of positive and negative instances.

2.2.2. Road Boundary Inference240

For the training set X composed of a number of instances {xi}`i=1, the goal of road

boundary inference is to find the related label {yi}`i=1∈ {−1,+1} of each instance.

For simplicity, xi is replaced by x. Instances considered either as road boundary or not
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can been taken as an “one against all” classification problem. And the problem can be

cast as learning a prediction function f : X → Y mapping the feature instance x to the245

binary classification label y. For better considering the structural information between

instances, structural SVM is utilized to learn this prediction function. Dissimilar to

traditional classifiers such as SVM, SSVM considers the separability between classes

and the compactness within classes simultaneously. It directly introduces the data dis-

tributions of classes into the optimization function. By this means, the underlying data250

structure is emphasized in the classification procedure.

As for the implementation, f is actually defined to be a score function F : X×Y →

R. Generally, F is chosen as a linear combination of w and Ψ(x, y), written as

F (x, y;w) = 〈w , Ψ(x, y)〉 , (3)

where w is the weight parameter and Ψ(x, y) is the joint feature transformation. Once

their values are set, the corresponding label of an input feature vector x can be inferred

by maximizing the output of F , which means

f(x;w) = arg max
y

F (x, y;w). (4)

In this process, Ψ(x, y) is denoted as a kernel function that maps the feature space x

to a higher dimension space in order to further improve the classification performance255

[32]. Meanwhile, the distribution of the instances in the same class, which represents

its structural information, is also reflected in this function. For the instances in the

same class, the same mapping strategy according to Ψ(x, y) is utilized to project the

instances into the same higher dimensional space. Different classes would be projected

into different higher dimensions.260

As for the estimation of w, it depends on a set of training instances T which are

obtained from the training set generation mentioned above. The structured SVM learn-

s the parameter w through the minimization of a constrained quadratic optimization

12



problem utilizing the risk minimization and margin maximization strategies:

min
w,ξ
‖w‖2 + C

∑`
i=1 ξi,

s.t. w′Ψ(xi, yi)−w′Ψ(xi, y) + ξi ≥ ∆(yi, y),

i = 1, . . . , `,∀y ∈ Y,

(5)

where C is a balance parameter. The function ∆ : X × Y → R+ measures a distance

in label space. For binary labels, writes:

∆(yi, y) = (1− yiy)/2. (6)

2.2.3. SSVM Online Implementation

There are a number of constraints in (5) with respect to the dimensionality of y.

Therefore, the computational efficiency is a critical problem. In order to speed up

the calculation, an online learning implementation is utilized to speed up the training

procedure.265

Algorithm 1 SSVM Online Implementation
Input: Training set feature X, training set feature label Y , and threshold.
Output: Classification hyperplane w.
Initialize: Initialize w, accumulated cost.

1: flag = 0 ;
2: while flag == 1 do
3: for each training instance do
4: Find the most violated constraint under the current w;
5: Add the most violated constraint to the constraint set;
6: Calculate the accumulated cost value;
7: if accumulated cost < threshold then
8: Solve Eq. (5) under the constraint set via cutting plane algorithm;
9: else

10: flag = 1 ;
11: end if
12: end for
13: end while

The details of SSVM online updating is shown in Algorithm 1. For each of the

training instances, the most violated constraints are incrementally added to a constraint
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Figure 4: Typical road boundary inference results. The detected boundary instances are labeled in red.

set which are combined by linear inequalities considering the structural information

between instances of the same class. Then the cutting plane algorithm [33] would iter-

atively refine before analysing the constructed constraint set to solve the minimization270

problem. In this way, the optimization can be efficiently realized.

Fig. 4 shows some typical inference results of SSVM classifier which are randomly

selected from the testing data.

2.3. Road Boundary Fitting

The inferred boundary instances deliver a certain level of the true information, but275

they are not continuously connected from place to place. In order to make the detected

road boundary more reliable, it is necessary to consider other constraints which would

improve the robustness of the boundary inference result. For this purpose, edge and

road model are the two constraints considered here.

As for the edge inspired constraint, our assumption is that the inferred road bound-280

ary instances will mostly exist in the same place where they can be detected by other

edge detection methods. For commonly used edge detection operators, such as Canny,

Sobel and Prewitt, they can only estimate the local edge which is sensitive to the noise

in the pixel space. Though noise removal preprocessing can improve the performance,

it is essential to consider more information in a bigger neighborhood. Fortunately, im-285
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age segmentation can solve this problem well which integrates region-based cue and

is robust to local noise. The desired edges can be easily obtained from the superpix-

els after segmentation [34]. In this case, even if the inferred boundary is unreliable

(especially in faint object boundaries and cluttered background), the added edge cue

from segmentation can enforce the credibility. Those instances with road labels from290

both sources are treated as the final detected road boundary instances. In our frame-

work, SLIC superpixel method [35] is adopted. It clusters pixels in the combined

five-dimensioned color space and it can generate compact, nearly uniform superpixels

efficiently.

As for the road model, it is mainly employed to complete the disjoined boundary295

sections. In this work, the focus is primarily on the straight road detection. This is

because the straight type is mostly seen in our daily life. Besides, the linear perspective

phenomenon makes the curved line more “straight” especially when the camera is close

to the ground plane. Thus the task accordingly becomes to obtain a set of “inliers”

satisfying the straight line model. There are many ways for line fitting, but the robust300

estimation by random sampling, especially RANdom SAmple Consensus technique

(RANSAC), has been proven to be the most promising one. In our framework, the

detected instances are fitted through RANSAC method [36], [37] which chooses the

solution that maximizes the likelihood rather than just the number of inliers. After the

road boundary fitting procedure, the road region can be easily identified as the region305

enclosed by the two straight lines.

The edge and road model constraints generally make the road boundary detection

more reliable. The SSVM classified result may not be reliable enough, i.e. some non-

road boundary parts may be regarded as road boundary. When the non-road boundary

parts are incorrectly classified as road boundary, the edge constraint obtained by su-310

perpixel segmentation would eliminate these parts. Furthermore, the road model con-

straint would restrict the the fitted curved lines of road boundary. To sum up, these two

constraints can make final road boundary more reliable.
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2.4. Online Classifier Update

Consider the situation that the road appearance, such as lighting, gradient, texture,315

etc., changes a lot as the vehicle or robot is moving. As a result, the classifier per-

formance would degenerate without adaptation to the new road boundary condition.

Given this fact, an online updating procedure is desired, which would make the classi-

fier have more adaptability to the dynamic scene. In our framework, after straight line

fitting, misclassified instances can be obviously distinguished by treating the obtained320

boundary as a ground truth label. In other words, for a positive instance, we consider

it misclassified only if it is labeled negative by the classifier. Similarly, for a negative

instance not belonging to the road boundary, we consider it misclassified only if it is

labeled positive.

Just as the adaboost updating procedure [38], only the misclassified instances are

used to update the model. Let Dp = {( xpi , y
p
i ), i = 1, . . . , np} be the collection of np

misclassified positive instances at the tth frame, and Dn = {( xni , y
n
i ), i = 1, . . . , nn}

the collection of nn misclassified negative instances. Considering the problem of sam-

pling balance, we use a parameter τ to adjust the ratio between the number of positive

instances and the number of negative instances, which can be interpreted as the knowl-

edge of prior probability. Then the sampling number of positive is

k = min {np , nn/τ} . (7)

The updating training set would be

D = {Dp
i , D

n
j |i ∈ rand(np, k), j ∈ rand(nn, τk)

}
, (8)

where rand(n, k) means randomly select k numbers from {1, . . . , n}. These misclas-325

sified instances can also be regarded as “support vectors” which means the instances

can make the classifier more robust.

After the training set updating by solving Eq. (5), the classifier would be updated

and the renewed classifier would be used for the inference in the next frame.
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3. Experiments and analyses330

In this section, experiments are conducted to verify the effectiveness of the pro-

posed method. We first introduce the data set constructed by ourselves. Then the

experimental settings are detailed and the parameter selection is conducted. After that,

experimental analysis and discussion are finally presented.

3.1. Data Set335

For validation of the proposed method, a data set of four kinds of road videos has

been collected. The videos are all RGB image sequences and the acquisition rate is

25fps. In our framework, the size of video frames is normalized into 300 × 500. In

order to validate the robustness and effectiveness objectively, we have manually labeled

almost 7000 frames of all the videos frames and the labeled results are served as the340

ground truth. The detailed attributes of these videos are listed in Table 1.

• Structured Road in Daytime (“srd” sequence). The first video contains structured

road which was captured in daytime. This kind of road often has clear boundaries

and they can be easily distinguished from other non-boundary regions. Several

T-intersection road conditions are also included in the video.345

• Structured Road in Nightfall (“srn” sequence). The second one is structured road

which was taken at nightfall. Compared to the structural road in daytime, this

video has lower intensity value and the neon lights make the road region much

more similar to the surroundings in color appearance.

• Unstructured Highway Road (“uhr” sequence). The third video is on highway350

road. In this case, the road markings and pavements are not as good as the struc-

tured road. The boundaries of the road region is not clearly differentiated from

the surroundings. The camera’s jitter also makes the detection more difficult.

• Unstructured Muddy Road (“umr” sequence). The fourth one is muddy road. In

this condition, the road surface is uneven and no obvious road boundaries exist.355

This makes the problem much more challenging.
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Table 1: The data set description.
Video type Number of Frames Attributes

“srd” sequence 4000 T-intersection road
“srn” sequence 977 Low intensity, street lamp lighting reflection
“uhr” sequence 1238 Large pitch and yaw change, wide baseline
“umr” sequence 580 No clear boundary, variational road boundary

3.2. Experimental Settings

Before detailedly analyzing the performance of the proposed method in this paper,

the competitors and evaluation criteria will be introduced in the following part.

1. Competitors360

To verify the effectiveness of the proposed method, we compare it with state of

the art. In this work, two competitors are employed, which are SVM based and

vanishing point based methods. Since the SVM classifier has been widely used

in computer vision applications, we firstly adopt it to classify the road boundary

and then the following processing keeps the same to the proposed method. On365

the other hand, this setting can test the usefulness of structural information in

the proposed framework. As for the vanishing-point based method [39], the

dominant texture orientation at each pixel is computed in a novel adaptive soft

voting scheme using confidence-weighted Gabor filters. Then a vanishing-point

constrained edge detection technique is used to detect road boundaries. Although370

no prior knowledge is needed, this method relies on time-consuming filters and

the inference is sensitive to other straight edges in the scene. The road region is

finally inferred from the boundary.

2. Measurement for Road Region

For the evaluation of the detected road region, we mainly focus on the pixel-wise

metrics. Accuracy, precision, and recall are used in this work, which measure

different aspects of the road detection results. The three metrics are defined
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based on the confusion matrix as described in [40], [41]. To be specific,

accuracy = TP+TN
TP+FP+TN+FN ,

precision = TP
TP+FP ,

recall = TP
TP+FN .

(9)

But unfortunately, these metrics are sometimes contradictory. In order to get a

unified evaluation, F-measure is usually used as a compromise. It is defined as

F−measure =
precision× recall

(1− α)× precision+ α× recall
, (10)

where α is an adjustable parameter which is set to 0.5 in our experiments.375

3. Measurement for Vanishing Point

In our framework, after the road boundary fitting procedure, vanishing-point can

be obviously inferred from the crossover of the two straight lines. Based on

the manually labeled ground truth, the Euclidean distance in pixels is used to

show the quality of the vanishing-point estimation. The measurement can be

calculated as follows:

Distance = ‖P − P0‖, (11)

where P is the estimated vanshing-point location and P0 is the labeled vanishing-

point location. All the input frames are normalized into 300 × 500 so as to

make the proposed method adapt to more environmental conditions without any

parameter changing.380

3.3. Parameter Selection

There are several critical parameters to be set in the experiments. The first one is the

region size N ×N of each sampled instance. In our method, the feature vector of the

examined instance is expressed by the information contained around the neighborhood.

Its size will influence the expression of the feature vector, and accordingly, the results385

of boundary inference. In order to select a suitable N , we conduct comparisons under

different settings. Fig. 5 denotes the accuracy of the classifier with varying choices of
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Figure 5: The performance under different patch size for feature extraction of the sample instance. The
horizontal axis is the patch size N , and the vertical axis is the accuracy of the classifier.
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Figure 6: The performance under different feature groupings. The horizontal axis indicates the various
groupings of the features, and the vertical axis represents the accuracy of the classifier.
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Figure 7: The performance under different sampling ratio τ . The horizontal axis is the ratio τ according to
Eq. (12), and the vertical axis is the accuracy of the classifier.

N under the four testing scenes, having the red line indicating the average accuracy.

In this figure, we can find that the accuracy reaches the peak when the region size is

N = 15 . This is because the road boundary is located in a specific region and large390

region size for feature extraction would make the classifier confused. Based on this

phenomenon, the region sizes after N = 20 make no sense and this is demonstrated in

the figure. In our method, the region size N for feature extraction is set to 15.

The second parameter is the feature selection. There are three features in our

method, DSIFT, HOG and LBP. All of them reflect the texture cue from a specific395

aspect and how to fuse them is a remaining question up to now. If fewer features can

achieve perfect performance, it is more computationally efficient to use the smaller

feature set. For this purpose, different feature sets are evaluated in Fig. 6. It can be

seen that DSIFT plays an important role and the features combined with DSIFT can

have a good performance. However, the best results are obtained by using the three400

features altogether. But for faster speed in real applications, only DSIFT suffices for

an acceptable performance.

The third parameter is the ratio τ between the negative and positive training in-

stances for the model updating procedure. Since τ can serve as the prior probability

of different category numbers, its value will affect the trained classifier. In our experi-405
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(a) (b)

(c) (d)
Groundtruth

Figure 8: Typical road detection results of the vanishing-point based, SVM based, and the proposed method
in this paper. The four kinds of scenes are separately showed in (a), (b), (c), and(d). For each scene, from
top to bottom are the ground truth, the results of two competitors and our method.

ments, the ratio τ is set as follows

τ ∈ {1, 1.5, 1

1.5
, 2,

1

2
, · · · , 10,

1

10
} . (12)

The dual pair of τ (e.g., 2, 12 ) makes a balanced choice for possible negative and pos-

itive numbers. The evaluation results are shown in Fig. 7. The red line is the average

accuracy of the four testing videos. It is obvious that after τ = 3.5, the accuracy

changes little. Larger τ will not greatly increase the performance. Instead, it may410

cause the detection rate of boundary (TP) decrease, for the reason that more instances

will be determined as negative samples. Therefore, the parameter τ is set to 3.5 in our

method.

3.4. Performance Analysis

In this part, experimental results are evaluated by qualitative and quantitative mean-415

s. Typical road detection results of the four sceneries are shown in Fig. 8. From the

figure, it is obvious that the proposed method is more accurate and robust in defining

the road area and vanishing point. Even for the muddy road with no clear markings,
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Table 2: Performance of our Road detection framework. The data in each column is obtained by
computing the average value for the frames in each sequence, and the Bold one represents the
best.

Methods Testing Video Accuracy(%) Precision(%) Recall(%) F-measure(%) Distance(pixel)

VP [39]
“srd” sequence 96.43 95.72 97.34 96.48 9.14
“srn” sequence 87.86 69.69 98.19 81.06 7.40
“uhr” sequence 95.13 80.24 94.30 85.94 5.08
“umr” sequence 89.68 66.68 94.64 77.52 4.82

average 78.26 78.08 96.12 85.25 6.61

SVM
“srd” sequence 99.02 98.20 99.90 99.04 2.46
“srn” sequence 96.98 89.88 99.81 94.56 3.36
“uhr” sequence 96.30 82.99 98.26 89.42 3.57
“umr” sequence 94.27 84.19 88.82 85.37 16.83

average 96.64 88.82 96.70 92.10 6.56

Ours
“srd” sequence 99.19 98.71 99.69 99.20 2.20
“srn” sequence 98.51 95.43 99.16 97.21 3.00
“uhr” sequence 99.21 98.25 97.00 97.57 2.06
“umr” sequence 99.07 96.49 98.23 97.27 3.10

average 99.00 97.22 98.52 97.81 2.59

our method can demonstrate a superior performance.

For a more objective comparison, we calculate the statistics of the five measures420

introduced in Section 3.2. The results are shown in Table 2. We can see clearly that the

highest scores are mostly achieved by the proposed method. Only three recall values

for the SVM based method are a little better than ours, but the differences are very

small. Besides, the other scores of SVM based method is not comparable with ours.

Therefore, it is reasonable to claim that the proposed method is more effective than the425

other competitors.

In the following, a more detailed analysis on the four video sequences will be p-

resented. Since the aforementioned metrics focus on the overall statistics, we will

alternatively discuss the results on frame level. For each frame, we first compute it-

s pixel-wise accuracy based on the ground truth. Then we set different thresholds to430

count the percentage of frames with a higher accuracy above the threshold. Those s-

elected frames are thought to be the correct detections and a larger frame percentage

indicates a better performance. By changing the threshold from 0.8 to 1, we can get the

statistical curves shown in Fig. 9, from which the robustness and effectiveness of the

three methods can be compared. Intuitively, the higher the curve line and the larger the435

area below the curve line, the better performance a method has. The same strategy is

utilized for vanishing-point evaluation. If the distance between the detected vanishing-
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point and ground truth is smaller than the threshold, the detection of this frame would

be regarded as correct. By varying the threshold from 0 to 20 pixels, the properties of

the three methods can also be compared. The obtained results are shown in Fig. 10.440

Structural road at daytime. This video is stable and the road boundary has clear

color and gradient. Fig. 9(a) and Fig. 10(a) show that the proposed method and SVM

based method nearly have the same performance. Both of them are far better than the

vanishing point based one. In fact, we find the output after SSVM classifier is better

than the output by SVM. The subsequent boundary fitting procedure fortunately makes445

up the gap. Thus the final results demonstrate little difference. But the statistics in

Table 2 still tell us that the proposed method is superior to the SVM based one. As

for the vanishing point based method, the temporal cue between adjacent frames is not

considered, instead of utilizing the previous result as the prior knowledge. Therefore,

the obtained results are not stable.450

Structural road at nightfall. The environmental light in this sequence is not ade-

quate and the reflection of neon lights influences the feature extraction. On this occa-

sion, SIFT, HOG and LBP features are all considered so as to obtain a stable inference

result of road boundary. The comparisons are shown in Fig. 9(b) and Fig. 10(b).

It is manifest that the proposed method and SVM based method are more robust to455

the cluttered scene than the vanishing point based method. The reason is mainly due

to their targeted sample selection and their use of a reference map. Apart from this,

the vanishing-point based method focuses on the gradient information in color space

which has a lot noise affected by the light reflection and low contrast, while our method

considers the gradient and texture simultaneously, which can adapt to the low contrast460

environment.

Unstructured Highway road. The frames in this sequence have large pitch and

yaw and the road boundaries are ambiguous in some frames. Fig. 9(c) and Fig. 10(c)

show the comparative results. The gradient and texture information of the road bound-

ary change a lot as the vehicle is moving. By utilizing the online-learning strategy465

that updates the classifier as the new environment appears, the proposed method and

SVM based one are able to tackle it. Meanwhile, since the proposed method considers

the underlying structure of the sample instances, it can classify them more precisely.
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Therefore, it is better than SVM. On the contrary, vanishing point based method does

not consider the structure cue and is unable to adapt to the changes. Thus its perfor-470

mance is poorer.

Unstructured Muddy road. This sequence is cluttered by complex texture in the

muddy road, which causes the road boundaries to be ambiguous. We define the region

between plants and muddy areas as road boundary. The detection results are shown

in Fig. 9(d) and Fig. 10(d). There are three aspects to explain the good performance475

of the proposed method. Firstly, although the video frames are cluttered and some

unnecessary information far from the boundary may cause the classifier to fail, the

targeted instances are sampled along the road boundary which largely improve the

judgement of the classifier. Secondly, the online updating strategy makes the classifier

adapt to the changing of the road boundary compared to the vanishing-point based480

method. Thirdly, our method utilizes SSVM to obtain the structure information of the

same class which can help a lot for inferring the new instances compared with SVM

based method.

As mentioned above, online learning strategy helps the model adapt to the variable

environments. Moreover, structure information is utilized to improve the performance485

of the classifier and mitigate the fact that an online learning strategy can degrade the

model a lot if previous detection results are incorrect. Thus the structure information

and the online learning complement each other, each correcting the other’s errors. This

conclusion can be generated from the detection results of the four testing videos, es-

pecially for the last two videos. To be specific, the camera for capturing highway road490

scenes have significant jitters aiming at simulating complex road scene. The muddy

road scenes are chosen to verify the situation where the road boundary is ambiguous.

But under these two situations, our method can still handle the unstructured road de-

tection very well.

3.5. Discussion495

In this section, we present two aspects for further discussion. The first one is about

the assumption on the road boundary type. The second one is about the computational

time. The details is discussed in the following.
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Figure 9: Evaluation of the proposed method with two competitors by road region accuracy. After road de-
tection, each frame has an accuracy according to the ground truth labelings. Then we set different thresholds
(horizontal axis) to count the percentage of frames (vertical axis) with a higher accuracy above the threshold.
(a)-(d) are respectively the results of the four road scenes.
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Figure 10: Evaluation of the proposed method with two competitors by vanishing point distance. After road
detection, each detected vanishing point has a distance from the ground truth one. Then we set different
thresholds (horizontal axis) to count the percentage of frames (vertical axis) with a smaller distance than the
threshold. (a)-(d) are respectively the results of the four road scenes.
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1) Adaptability for Road Boundary Type

In this paper, we have made an assumption that the road boundary can be fitted500

by a straight line. The starting point of making such assumption can be explained in

two aspects. Firstly, straight road boundary often occurred and some non-straight road

boundary can be regarded as straight when it has small curvature. This phenomenon

is even more obvious under the circumstance that the road region almost fully fills

the field of view. Secondly, the analysis of curved boundary follows a similar way505

as what has been discussed in the straight boundary occasion. The only difference is

the boundary fitting procedure, in which case we only need to employ a curve fitting

function. This is not a difficult task. From this aspect, our assumption is reasonable

and the proposed framework can be readily extended to the curved boundary.

2) Computational Complexity510

In our experiments, the proposed method is implemented in MATLAB on the plat-

form of Microsoft Windows with Inter i3 3.4GHz, 2GB memory without any specific

code optimization. The average running time of each frame is 14s and nearly 36%

of the timing consumption is in the feature extraction procedure. However, the main

purpose of road detection is for real-time driver assistance or robot navigation and ef-515

ficiency is a critical factor. One solution is to use fewer features while maintaining

an acceptable performance. For example, if only SIFT feature is employed, the aver-

age time will be reduced to about 8s. The second solution is by hardware or software

speedup. Parallel computation (e.g., feature extraction and SSVM retraining can be

conducted at the same time) and GPU are possible choices [42].520

4. Conclusion

In this paper, we present an online-learning method for efficiently exacting the

drivable road region in a video sequence. Firstly, the targeted sampling instances are

selected within the boundary neighborhood. Then a fusion of features are used to

describe the extracted instances. After that, the feature vectors are input to a structure525

SVM classifier to determine their binary label of boundary and non-boundary, followed

by a fitting procedure to enhance the reliability of the detected boundary. Finally, the
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road area is inferred from the boundary and the learned classifier is updated online to

ensure its adaptability to the changing environment. The superiority of the proposed

method is verified on the data set collected by ourselves and the experimental results530

show that it outperforms the other competitors.

In the future, we plan to tackle more complex situations in real life. For example,

when the road shape is changeable or the illumination is varying, how to estimate the

road region is still a challenging problem. Besides, the GPU implementation of the

proposed method is also desired to make the system practical for real-time implemen-535

tation.
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